文章目录
- 全网最全Python图算法
-
- 图几个关键概念
- 图的存储形式(边、顶点的数据结构)
- 图的抽象数据类型
- 图的遍历
-
- 广度优先搜索
- 深度优先搜索
- 测试
- 最小生成树
-
- prim最小生成树
- prim 最小生成树(优先对列)
- kruskal最小生成树
- 测试
- 单源最短路径
-
- dijkstra单源最短路径
- dijkstra单源最短路径(优先队列)
- 测试
- bellman_ford单源最短路径
- 测试
- 图的遍历的应用
-
- 有向图的环路存在性判断
- 拓扑排序
-
- 广度优先策略
- 深度优先策略
- 测试
- 强连通分量
-
- 测试
- 后记
- 参考书目
- 整体代码
全网最全Python图算法
图几个关键概念
⚫图可以表示为一个二元组𝑮 =< 𝑽, 𝑬 >,其中
- 𝑽表示非空顶点集,其元素称为顶点(Vertex)
- 𝑬表示边集,其元素称为边(Edge)
- 𝒆 = 𝒖, 𝒗 表示一条边,其中𝒖 ∈ 𝑽, 𝒗 ∈ 𝑽, 𝒆 ∈ 𝑬
⚫无向图
- 若顶点𝒖到𝒗之间的边没有方向,则称这条边为无向边(Edge),用无序偶对(𝒖,𝒗)来表示。
- 如果图中任意两个顶点之间的边都是无向边,则称该图为无向图。
⚫有向图
- 若顶点𝒖到𝒗之间的边有方向,则称这条边为有向边,也称为弧(Arc)。用有序偶<𝒖,𝒗>来表示,𝒖称为弧尾(Tail),𝒗称为弧头(Head)。
- 如果图中任意两个顶点之间的边都是有向边,则称该图为有向图(Directed graphs)。
⚫ 有向图顶点的度分为入度和出度- 顶点𝒖的入度:起点为𝒖的边数
- 顶点𝒖的出度:终点为𝒖的边数
⚫ 相邻(Adjacent)
- 边𝒖, 𝒗 连接的顶点𝒖和𝒗相邻
⚫ 关联(Incident)
- 边𝒖, 𝒗 和其连接的顶点𝒖(或𝒗)相互关联
⚫ 顶点的度(Degree of a Vertex)
- 顶点𝒗的度𝒅𝒆𝒈(𝒗)是𝒗关联的边数
⚫ 图的度(Degree of a Graph)
- 图𝑮 =< 𝑽, 𝑬 >的度,是图各顶点的度之和,𝒅𝒆𝒈(𝑮) = σ𝒗∈𝑽 𝒅𝒆𝒈(𝒗)
⚫握手定理(Handshaking Lemma)
- 无向图的度是边数的两倍, 𝒅𝒆𝒈(𝑮) = 𝟐|𝑬|
⚫ 路径(Path)
- 图中一个的顶点序列< 𝒗𝟎, 𝒗𝟏, … , 𝒗𝒌 >称为𝒗𝟎到𝒗𝒌的路径
- 路径包含顶点𝒗𝟎, 𝒗𝟏, … , 𝒗𝒌和边𝒗𝟎, 𝒗𝟏 , 𝒗𝟏, 𝒗𝟐 , … , (𝒗𝒌−𝟏, 𝒗𝒌)
- 存在路径< 𝒗𝟎, 𝒗𝟏, … , 𝒗𝒌 > ,则𝒗𝟎可达𝒗𝒌
- 如果𝒗𝟎, 𝒗𝟏, … , 𝒗𝒌互不相同,则该路径是简单的
⚫环路(Cycle)
- 如果路径< 𝒗𝟎, 𝒗𝟏, … , 𝒗𝒌 >中𝒗𝟎 = 𝒗𝒌且至少包含一条边,则该路径构成环路
- 如果𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌互不相同,则该环路是简单的
⚫连通(Connectivity)
- 如果图的任意对顶点互相可达,则称该图是连通的,反之称为非连通。
⚫ 通分量(Connected Components)
- 根据是否连通将顶点进行分组,相互可达的顶点集称为连通分量
⚫ 子图(Subgraph)
- 如果𝑽′ ⊆ 𝑽, 𝑬′ ⊆ 𝐄,则称图𝑮’ =< 𝑽’, 𝑬’ >是图𝑮的一个子图
⚫ 生成子图(Spanning Subgraph)
- 如果𝑽′ = 𝑽, 𝑬′ ⊆ 𝐄,则称图𝑮’ =< 𝑽’, 𝑬’ >是图𝑮的一个生成子图
⚫ 树(Tree)
- 连通、无环图𝑻 =< 𝑽𝑻, 𝑬𝑻 >,树有|𝑽𝑻| − 𝟏条边
⚫ 森林(Forest)
- 一至多棵树组成的无环图
图的存储形式(边、顶点的数据结构)
⚫ 图𝑮 =< 𝑽, 𝑬 > ,其邻接链表由|𝑽|条链表的数组构成
- 每个顶点有一条链表,包含所有与其相邻的顶点
- 𝑨𝒅𝒋[𝒂] ={𝒃, 𝒅}; 𝑨𝒅𝒋[𝒃] ={ 𝒂, 𝒄, 𝒅, 𝒇 }; 𝑨𝒅𝒋[𝒄] ={𝒃, 𝒇 }; …
- 空间大小𝑶(|𝑽| + |𝑬|)
为了实现稀疏连接的图,更高效的方式是使用邻接表。在邻接表实现中,我们为图对象的所有顶点保存一个主列表,同时为每一个顶点对象都维护一个列表,其中记录了与它相连的顶点。在对Vertex类的实现中,我们使用字典(而不是列表),字典的键是顶点,值是权重。
邻接表的优点是能够紧凑地表示稀疏图。此外,邻接表也有助于方便地找到与某一个顶点相连的其他所有顶点。
在Python中,通过字典可以轻松地实现邻接表。我们要创建两个类:Graph类存储包含所有顶点的主列表,Vertex类表示图中的每一个顶点。
Vertex使用字典connectedTo来记录与其相连的顶点,以及每一条边的权重。
以下Vertex类的实现,其构造方法简单地初始化id(它通常是一个字符串),以及字典connectedTo,以及其他算法所需要的辅助参数。
- addNeighbor方法添加从一个顶点到另一个的连接。
- getConnections方法返回邻接表中的所有顶点,由connectedTo来表示。
- getWeight方法返回从当前顶点到以参数传入的顶点之间的边的权重。
- setPred()\getPred() 设置\获取前驱顶点。
- setColor()\getColor() 设置\获取顶点状态(颜色)。
- setDistance()\getDistance() 设置\获取顶点的距离。
class Vertex:
'''
创建一个空顶点
'''
def __init__(self,key):
self.id = key
self.connectedTo = {}
self.color = 'white'
self.dist = inf
self.pred = None
self.disc = 0
self.fin = 0
def addNeighbor(self, nbr, weight = 0):
'''
添加邻接的顶点
:param nbr: 邻接的顶点
:param weight: 默认为0
:return:
'''
self.connectedTo[nbr] = weight
def getConnections(self):
'''
获取邻接的所以顶点
:return:
'''
return self.connectedTo.keys()
def getId(self):
'''
获取自身顶点的值
:return:
'''
return self.id
def getWeight(self, nbr):
'''
两顶点连接边的权重
:param nbr:
:return:
'''
return self.connectedTo[nbr]
def setColor(self, color):
'''
设置顶点的颜色(一般设置为白色表示未访问,灰色表示待处理,黑色表示访问完成)。
:param color: 字符串、或者int 例如 color = 'white' color = -1
:return:
'''
self.color = color
def getColor(self):
'''
获取顶点的颜色,(一般设置为白色表示未访问,灰色表示待处理,黑色表示访问完成)
:return:
'''
return self.color
def setDistance(self, d):
'''
设置顶点距离,(不同算法有不同的意义)如单源最短路径表示源点到该点最短距离,最小生成树表示离该顶点最小的权重。
:param d:
:return:
'''
self.dist = d
def getDistance(self):
'''
获取该顶点的距离,(不同算法有不同的意义)如单源最短路径表示源点到该点最短距离,最小生成树表示离该顶点最小的权重。
:return:
'''
return self.dist
def setPred(self, p):
'''
设置该顶点的前驱顶点
:param p:
:return:
'''
self.pred = p
def getPred(self):
'''
设置该顶点的前驱顶点
:return:
'''
return self.pred
##以下方法用得不多,帮助理解。
def setDiscovery(self, dtime):
'''
设置顶点发现时间。
:param dtime:
:return:
'''
self.disc = dtime
def getDiscovery(self):
'''
获取顶点发现时间。
:return:
'''
return self.disc
def setFinish(self, ftime):
'''
设置顶点完成时间。
:param ftime:
:return:
'''
self.fin = ftime
def getFinish(self):
'''
获取顶点完成时间。
:return:
'''
return self.fin
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
图的抽象数据类型
图的抽象数据类型由下列方法定义。
- Graph()新建一个空图。
- addVertex(vert)向图中添加一个顶点实例。
- addEdge(fromVert, toVert)向图中添加一条有向边,用于连接顶点fromVert和toVert。
- addEdge(fromVert, toVert, weight)向图中添加一条带权重weight的有向边,用于连接顶点fromVert和toVert。
- getVertex(vertKey)在图中找到名为vertKey的顶点。
- getVertices()以列表形式返回图中所有顶点。
- in通过vertex in graph这样的语句,在顶点存在时返回True,否则返回False。
- reverse()生成逆向图。
- InDegreeUpdate 入度更新。
- OutDegreeUpdate 出度更新。
- bfs() 对图进行广度优先搜索。
- dfs() 对图进行深度优先搜索。
- prim() 生成最小生成树。
- kruskal() 生成最小生成树。
- dijkstra() 单源最短路径。
- bellman_ford() 单源最短路径。
- dfs_judge_cycle() 深度优先搜索进行环路判断。
- topological_sort_bfs() 宽度优先搜索生成拓扑排序。
- topological_sort_dfs() 深度优先搜索生成拓扑排序。
- Strongly_Connected_Component()生成强联通分量。
class Graph:
'''
新建一个空图。
'''
def __init__(self):
'''
初始化邻接表,顶点个数
'''
self.vertList = {}
self.numVertices = 0
self.time = 0
def addVertex(self, key):
'''
向图中添加一个顶点实例
:param key:
:return: None
'''
self.numVertices = self.numVertices + 1
newVertex = Vertex(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self, n):
'''
在图中找到名为n的顶点
:param n:
:return:
'''
if n in self.vertList:
return self.vertList[n]
else:
return None
def __contains__(self,n):
'''
对in进行重载
:param n:
:return:
'''
return n in self.vertList
def addEdge(self, f, t, weight = 0):
'''
)向图中添加一条带权重cost的有向边,用于连接顶点f和t
:param f:
:param t:
:param weight:
:return: None
'''
if f not in self.vertList:
nv = self.addVertex(f)
if t not in self.vertList:
nv = self.addVertex(t)
self.vertList[f].addNeighbor(self.vertList[t],weight)
def getVertics(self):
'''
以列表形式返回图中所有顶点
:return: {}.keys()
'''
return self.vertList.keys()
def __iter__(self):
'''
对迭代进行重载,方便遍历顶点邻接表
:return:
'''
return iter(self.vertList.values())
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
图的遍历
广度优先搜索
广度优先搜索伪代码
def bfs(self,start = None):
'''
广度优先搜索
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
start.setDistance(0)
start.setPred(None)
vertQueue = queue.Queue()
vertQueue.put(start)
out = []
while vertQueue.empty() == False:
currentVert = vertQueue.get()
for nbr in currentVert.getConnections():
if nbr.getColor() == 'white':
nbr.setColor('gray')
nbr.setDistance(currentVert.getDistance() + 1)
nbr.setPred(currentVert.getId())
vertQueue.put(nbr)
currentVert.setColor('black')
out.append(currentVert.id)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
深度优先搜索
深度优先搜索伪代码
DFS(𝑮)
DFS-Visit(𝑮, 𝒗)
DFS(𝑮)
def dfs(self):
'''
深度优先搜索
:return:
'''
out = []
self.time = 0
for aVertex in self:
aVertex.setColor('white')
aVertex.setPred(None)
for aVertex in self:
if aVertex.getColor() == 'white':
self.dfsvisit(aVertex,out)
return out
def dfsvisit(self, startVertex,out):
startVertex.setColor('gray')
self.time += 1
startVertex.setDiscovery(self.time)
for nextVertex in startVertex.getConnections():
if nextVertex.getColor() == 'white':
nextVertex.setPred(startVertex.getId())
self.dfsvisit(nextVertex,out)
startVertex.setColor('black')
self.time += 1
startVertex.setFinish(self.time)
out.append(startVertex.getId())
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
测试
if __name__ =='__main__':
g = Graph()
for i in range(1,9):
g.addVertex(i)
g.addEdge(1,2)
g.addEdge(2,1)
g.addEdge(1,5)
g.addEdge(5,1)
g.addEdge(2, 6)
g.addEdge(6,2)
g.addEdge(6, 3)
g.addEdge(3,6)
g.addEdge(6, 7)
g.addEdge(7,6)
g.addEdge(3, 7)
g.addEdge(7,3)
g.addEdge(3, 4)
g.addEdge(4,3)
g.addEdge(4, 8)
g.addEdge(4,7)
g.addEdge(7,4)
g.addEdge(8,4)
g.addEdge(7, 8)
g.addEdge(8,7)
g.bfs(g.vertList[2])
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
x = g.dfs()
print(x)
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
for v in g:
print(v.getDiscovery(),end = ' ')
print()
for v in g:
print(v.getFinish(),end = ' ')
print()
#输出
# 2 None 6 3 1 2 6 7
# 1 0 2 3 2 1 2 3
# [8, 4, 7, 3, 6, 2, 5, 1]
# None 1 6 7 1 2 3 4
# 1 0 2 3 2 1 2 3
# 1 2 4 6 14 3 5 7
# 16 13 11 9 15 12 10 8
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
最小生成树
prim最小生成树
prim最小生成树伪代码
def prim_simple(self,start = None):
'''
prim最小生成树简单版本
:param start: 迭代起点
:return:
'''
#在有向图中,有可能存在这样一种情况:两个节点之间来和回的权重不一样
#所以prim在某些情况下会失效
if start == None:
# 若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
for i in range(self.numVertices):
minDist = inf
rec = -1
for j in self:
if j.getColor() == 'white' and j.getDistance() < minDist:
minDist = j.getDistance()
rec = j
for u in rec.getConnections():
if rec.getWeight(u) < u.getDistance():
u.setDistance(rec.getWeight(u))
u.setPred(rec.getId())
rec.setColor('black')
# for u in rec.getConnections():
# newCost = rec.getWeight(u) + rec.getDistance()
# if newCost < u.getDistance():
# u.setDistance(newCost)
# u.setPred(rec.getId())
# rec.setColor('black')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
prim 最小生成树(优先对列)
def prim(self,start = None):
'''
prim最小生成树(采用优先队列)
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
pq = queue.PriorityQueue()
for v in list(self.getVertics()):
pq.put((self.vertList[v].getDistance(),v))
while not pq.empty():
(t, currentVert) = pq.get()
currentVert = self.vertList[currentVert]
for nextVert in currentVert.getConnections():
newCost = currentVert.getWeight(nextVert)
if newCost < nextVert.getDistance() and nextVert.getColor() == 'white':
nextVert.setPred(currentVert.getId())
nextVert.setDistance(newCost)
pq.put((newCost, nextVert.id))
currentVert.setColor('black')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
kruskal最小生成树
class DisjointSet:
def __init__(self, element=None):
self._father = {}
self._rank = {}
# 初始化时每个元素单独成为一个集合
if element is not None:
for i in element:
self.add(i)
def add(self, x):
# 添加新集合
# 如果已经存在则跳过
if x in self._father:
return
self._father[x] = x
self._rank[x] = 0
def _query(self, x):
# 如果father[x] == x,说明x是树根
if self._father[x] == x:
return x
self._father[x] = self._query(self._father[x])
return self._father[x]
def merge(self, x, y):
if x not in self._father:
self.add(x)
if y not in self._father:
self.add(y)
# 查找到两个元素的树根
x = self._query(x)
y = self._query(y)
# 如果相等,说明属于同一个集合
if x == y:
return
# 否则将树深小的合并到树根大的上
if self._rank[x] < self._rank[y]:
self._father[x] = y
else:
self._father[y] = x
# 如果树深相等,合并之后树深+1
if self._rank[x] == self._rank[y]:
self._rank[x] += 1
# 判断是否属于同一个集合
def same(self, x, y):
return self._query(x) == self._query(y)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
def kruskal(self):
'''
kruskal算法使用并查集类
:return:
'''
disjoinset = DisjointSet([key.getId() for key in self])
edges = []
for v in self:
for u in v.getConnections():
edges.append((v.getId(),u.getId(),v.getWeight(u)))
edges.sort(key = lambda a:a[2])
minu_tree = []
for edge in edges:
u, v, w = edge
if disjoinset.same(u, v):
continue
disjoinset.merge(u, v)
self.getVertex(v).setPred(u)
minu_tree.append(edge)
for edge in minu_tree:
self.getVertex(u)
return minu_tree
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
测试
if __name__ =='__main__':
g = Graph()
g.addVertex('a')
g.addVertex('b')
g.addVertex('c')
g.addVertex('d')
g.addVertex('f')
g.addVertex('h')
g.addVertex('g')
g.addVertex('i')
g.addVertex('z')
g.addEdge('a','b',4)
g.addEdge('b','a',4)
g.addEdge('a','h',8)
g.addEdge('h','a',8)
g.addEdge('b','c',8)
g.addEdge('c','b',8)
g.addEdge('b','h',1)
g.addEdge('h','b',1)
g.addEdge('h','i',7)
g.addEdge('i','h',7)
g.addEdge('c','i',2)
g.addEdge('i','c',2)
g.addEdge('c','d',7)
g.addEdge('d','c',7)
g.addEdge('i','g',4)
g.addEdge('g','i',4)
g.addEdge('g','f',2)
g.addEdge('f','g',2)
g.addEdge('f','z',10)
g.addEdge('z','f',10)
g.addEdge('d','f',14)
g.addEdge('f','d',14)
g.addEdge('d','z',9)
g.addEdge('z','d',9)
g.addEdge('c','f',6)
g.addEdge('f','c',6)
g.addEdge('h','g',1)
g.addEdge('g','h',1)
g.prim()
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
g.prim_simple()
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
x = g.kruskal()
print(x)
#输出
# None a i c g b h g d
# 0 4 2 7 2 1 1 4 9
# a,0
# b,4
# h,1
# g,1
# f,2
# i,4
# c,2
# d,7
# z,9
# None h i c g b h c d
# 0 1 2 7 2 1 1 2 9
#(这个输出在遍历时被覆盖掉了,只能通过print打印查找记录)
# [('b', 'h', 1), ('h', 'g', 1), ('c', 'i', 2), ('f', 'g', 2), ('a', 'b', 4), ('g', 'i', 4), ('c', 'd', 7), ('d', 'z', 9)]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
单源最短路径
dijkstra单源最短路径
def dijkstra_simple(self,start = None):
'''
dijkstra单源最短路径简单版本
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
for i in range(self.numVertices):
minDist = inf
rec = 0
for j in self:
if j.getColor() == 'white' and j.getDistance() < minDist:
minDist = j.getDistance()
rec = j
for u in rec.getConnections():
if rec.getDistance() + rec.getWeight(u) < u.getDistance():
u.setDistance(rec.getDistance() + rec.getWeight(u))
u.setPred(rec.getId())
rec.setColor('black')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
dijkstra单源最短路径(优先队列)
def dijkstra(self,start = None):
'''
dijkstra单源最短路径(使用优先队列)
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
pq = queue.PriorityQueue()
for v in list(self.getVertics()):
pq.put((self.vertList[v].getDistance(),v))
while not pq.empty():
(t, currentVert) = pq.get()
currentVert = self.vertList[currentVert]
for nextVert in currentVert.getConnections():
newDist = currentVert.getWeight(nextVert) + currentVert.getDistance()
if newDist < nextVert.getDistance() and nextVert.getColor() == 'white':
nextVert.setPred(currentVert.getId())
nextVert.setDistance(newDist)
pq.put((newDist, nextVert.id))
currentVert.setColor('black')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
测试
if __name__ =='__main__':
g = Graph()
g.addVertex('s')
g.addVertex('t')
g.addVertex('x')
g.addVertex('y')
g.addVertex('z')
g.addEdge('s','t',8)
g.addEdge('s','y',5)
g.addEdge('t','x',1)
g.addEdge('t','y',2)
g.addEdge('x','z',4)
g.addEdge('y','t',3)
g.addEdge('y','z',2)
g.addEdge('y','x',9)
g.addEdge('z','x',6)
g.dijkstra()
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
g.dijkstra_simple()
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
bellman_ford单源最短路径
def bellman_ford(self,start = None):
'''
bellman_ford算法
:param start:
:return:
'''
if start == None:
# 若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
#可以用这种方法遍历 不过比较繁琐。
# for v in self.getVertics():
# self.vertList[v].setDistance(inf)
# self.vertList[v].setPred(None)
# pred[v] = None
for v in self:
v.setDistance(inf)
v.setPred(None)
start.setDistance(0)
for i in range(self.numVertices-1):
for v in self:
for u in v.getConnections():
if v.getDistance() + v.getWeight(u) < u.getDistance():
u.setDistance(v.getDistance() + v.getWeight(u))
u.setPred(v.getId())
for v in self:
for u in v.getConnections():
if v.getDistance() + v.getWeight(u) < u.getDistance():
print("存在负环")
return False
return True
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
测试
if __name__ =='__main__':
bellman = Graph()
bellman.addVertex('s')
bellman.addVertex('t')
bellman.addVertex('x')
bellman.addVertex('y')
bellman.addVertex('z')
bellman.addEdge('s','t',6)
bellman.addEdge('s','y',7)
bellman.addEdge('t','x',5)
bellman.addEdge('x','t',-2)
bellman.addEdge('t','z',-4)
bellman.addEdge('t','y',8)
bellman.addEdge('y','z',2)
bellman.addEdge('y','x',-3)
bellman.addEdge('x','z',7)
bellman.bellman_ford()
for v in bellman:
print(v)
for v in bellman:
print(v.getPred(),end = ' ')
print()
for v in bellman:
print(v.getDistance(),end = ' ')
print()
#输出
# None x y s t
# 0 2 4 7 -2
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
图的遍历的应用
有向图的环路存在性判断
def dfs_judge_cycle(self):
for aVertex in self:
aVertex.setColor('white')
aVertex.setPred(-1)
for aVertex in self:
if aVertex.getColor() == 'white':
if self.dfs_visit_judge_cycle(aVertex) == True:
return True
return False
def dfs_visit_judge_cycle(self, startVertex):
startVertex.setColor('gray')
startVertex.setDiscovery(self.time)
for nextVertex in startVertex.getConnections():
if nextVertex.getColor() == 'gray':
return True
if nextVertex.getColor() == 'white':
nextVertex.setPred(startVertex.getId())
if self.dfs_visit_judge_cycle(nextVertex) == True:
return True
startVertex.setColor('black')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
拓扑排序
广度优先策略
#入度出度计算方法
def getOutDegrees(self,vertex):
'''
获取某个顶点出度
:param vertex:
:return:
'''
return self.vertList[vertex].OutDegree
def getInDegrees(self,vertex):
'''
获取某个顶点的入度(很蠢的一个做法哈哈)
:param vertex:
:return:
'''
#初始化完后遍历查找
self.vertList[vertex].InDegree = 0
for u in self:
if self.vertList[vertex] in u.getConnections():
self.vertList[vertex].InDegree += 1
return self.vertList[vertex].InDegree
def OutDegreeUpdate(self):
for u in self:
self.OutDegreeList[u.getId()] = len(u.getConnections())
def InDegreeUpdate(self):
for u in self:
self.InDegreeList[u.getId()] = 0
for u in self:
for v in u.getConnections():
self.InDegreeList[v.getId()] += 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
def topological_sort_bfs(self):
self.InDegreeUpdate()
vertQueue = queue.Queue()
out = []
for v in self:
if self.InDegreeList[v.getId()] == 0:
vertQueue.put(v)
while vertQueue.empty() == False:
currentVert = vertQueue.get()
# print(currentVert.getId(),end=" ")
out.append(currentVert.getId())
for nbr in currentVert.getConnections():
self.InDegreeList[nbr.getId()] = self.InDegreeList[nbr.getId()] - 1
if self.InDegreeList[nbr.getId()] == 0:
vertQueue.put(nbr)
# print()
# print(out)
return out
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
深度优先策略
def topological_sort_dfs(self):
self.out = []
L = []
for aVertex in self:
aVertex.setColor('white')
for aVertex in self:
if aVertex.getColor() == 'white':
self.topological_sort_dfs_visit(aVertex, L)
L.reverse()
return L
def topological_sort_dfs_visit(self, startVertex, L):
startVertex.setColor('gray')
for nextVertex in startVertex.getConnections():
if nextVertex.getColor() == 'white':
self.topological_sort_dfs_visit(nextVertex, L)
startVertex.setColor('black')
L.append(startVertex.getId())
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
测试
if __name__ == '__main__':
#拓扑排序测试
topological = Graph()
topological.addVertex('短裤')
topological.addVertex('长裤')
topological.addVertex('腰带')
topological.addVertex('衬衫')
topological.addVertex('领带')
topological.addVertex('外套')
topological.addVertex('袜子')
topological.addVertex('鞋')
topological.addVertex('手表')
topological.addEdge('袜子','鞋')
topological.addEdge('短裤','鞋')
topological.addEdge('短裤','长裤')
topological.addEdge('长裤','鞋')
topological.addEdge('长裤','腰带')
topological.addEdge('衬衫','腰带')
topological.addEdge('衬衫','领带')
topological.addEdge('领带','外套')
topological.addEdge('腰带','外套')
x = topological.topological_sort_bfs()
print(x)
x = topological.topological_sort_dfs()
print(x)
#输出
#['短裤', '衬衫', '袜子', '手表', '长裤', '领带', '鞋', '腰带', '外套']
#['手表', '袜子', '衬衫', '领带', '短裤', '长裤', '腰带', '外套', '鞋']
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
强连通分量
#逆序图
def reverse(self):
new = Graph()
for u in self:
new.addVertex(u.getId())
for u in self:
for v in u.getConnections():
new.addEdge(v.getId(),u.getId(),u.getWeight(v))
new.InDegreeUpdate()
new.OutDegreeUpdate()
return new
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
def Strongly_Connected_Component(self):
R = []
G_r = self.reverse()
L = G_r.dfs()
for i in G_r:
i.setColor('white')
L_scc = []
L.reverse()
for i in L:
if self.vertList[i].getColor() == 'white':
self.dfsvisit(self.getVertex(i), L_scc)
R.append(L_scc)
L_scc = []
return R
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
测试
if __name__ == '__main__':
#强联通分量测试
scc = Graph()
for i in range(1,11):
scc.addVertex(i)
scc.addEdge(1,10)
scc.addEdge(10,1)
scc.addEdge(1,3)
scc.addEdge(3,4)
scc.addEdge(4,1)
scc.addEdge(8,10)
scc.addEdge(8,9)
scc.addEdge(9,8)
scc.addEdge(9,7)
scc.addEdge(7,7)
scc.addEdge(3,7)
scc.addEdge(4,6)
scc.addEdge(6,5)
scc.addEdge(5,2)
scc.addEdge(2,6)
R = scc.Strongly_Connected_Component()
print(R)
#输出
#[[7], [5, 6, 2], [10, 4, 3, 1], [9, 8]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
后记
主要是巩固一下python的编程能力,顺便复习一下数据结构与算法。
后续有精力把算法导论里的算法补全。
创造不易,请多多支持。
参考书目
1.中国大学MOOC北航《算法设计与分析》
2.Python数据结构与算法分析(第二版)
整体代码
import queue
import sys
import os
import unittest
inf = 65535
GRAY = 0
WHITE = -1
BLACK = 1
class DisjointSet:
def __init__(self, element=None):
self._father = {}
self._rank = {}
# 初始化时每个元素单独成为一个集合
if element is not None:
for i in element:
self.add(i)
def add(self, x):
# 添加新集合
# 如果已经存在则跳过
if x in self._father:
return
self._father[x] = x
self._rank[x] = 0
def _query(self, x):
# 如果father[x] == x,说明x是树根
if self._father[x] == x:
return x
self._father[x] = self._query(self._father[x])
return self._father[x]
def merge(self, x, y):
if x not in self._father:
self.add(x)
if y not in self._father:
self.add(y)
# 查找到两个元素的树根
x = self._query(x)
y = self._query(y)
# 如果相等,说明属于同一个集合
if x == y:
return
# 否则将树深小的合并到树根大的上
if self._rank[x] < self._rank[y]:
self._father[x] = y
else:
self._father[y] = x
# 如果树深相等,合并之后树深+1
if self._rank[x] == self._rank[y]:
self._rank[x] += 1
# 判断是否属于同一个集合
def same(self, x, y):
return self._query(x) == self._query(y)
class Vertex:
'''
创建一个空顶点
'''
def __init__(self,key):
self.id = key
self.connectedTo = {}
self.color = 'white'
self.dist = inf
self.pred = None
self.InDegree = 0
self.OutDegree = 0
self.disc = 0
self.fin = 0
def addNeighbor(self, nbr, weight = 0):
'''
添加邻接的顶点
:param nbr: 邻接的顶点
:param weight: 默认为0
:return:
'''
self.connectedTo[nbr] = weight
self.OutDegree += 1
def getConnections(self):
'''
获取邻接的所以顶点
:return:
'''
return self.connectedTo.keys()
def getId(self):
'''
获取自身顶点的值
:return:
'''
return self.id
def getWeight(self, nbr):
'''
两顶点连接边的权重
:param nbr:
:return:
'''
return self.connectedTo[nbr]
def setColor(self, color):
'''
设置顶点的颜色(一般设置为白色表示未访问,灰色表示待处理,黑色表示访问完成)。
:param color: 字符串、或者int 例如 color = 'white' color = -1
:return:
'''
self.color = color
def getColor(self):
'''
获取顶点的颜色,(一般设置为白色表示未访问,灰色表示待处理,黑色表示访问完成)
:return:
'''
return self.color
def setDistance(self, d):
'''
设置顶点距离,(不同算法有不同的意义)如单源最短路径表示源点到该点最短距离,最小生成树表示离该顶点最小的权重。
:param d:
:return:
'''
self.dist = d
def getDistance(self):
'''
获取该顶点的距离,(不同算法有不同的意义)如单源最短路径表示源点到该点最短距离,最小生成树表示离该顶点最小的权重。
:return:
'''
return self.dist
def setPred(self, p):
'''
设置该顶点的前驱顶点
:param p:
:return:
'''
self.pred = p
def getPred(self):
'''
设置该顶点的前驱顶点
:return:
'''
return self.pred
##以下方法用得不多,帮助理解。
def setDiscovery(self, dtime):
'''
设置顶点发现时间。
:param dtime:
:return:
'''
self.disc = dtime
def getDiscovery(self):
'''
获取顶点发现时间。
:return:
'''
return self.disc
def setFinish(self, ftime):
'''
设置顶点完成时间。
:param ftime:
:return:
'''
self.fin = ftime
def getFinish(self):
'''
获取顶点完成时间。
:return:
'''
return self.fin
# def __str__(self):
# return str(self.id) + ":color " + self.color + ":disc " + str(self.disc) + ":fin " + str(
# self.fin) + ":dist " + str(self.dist) + ":pred \n\t[" + str(self.pred) + "]\n"
def __str__(self):
return str(self.id) + ":color " + self.color + ":disc " + str(self.disc) + ":fin " + str(
self.fin) + ":dist " + str(self.dist) + ":pred \n\t[" + str(self.pred) + "]\n"
class Graph:
'''
新建一个空图。
'''
def __init__(self):
'''
初始化邻接表,顶点个数
'''
self.vertList = {}
self.numVertices = 0
self.time = 0
self.InDegreeList = {}
self.OutDegreeList = {}
def addVertex(self, key):
'''
向图中添加一个顶点实例
:param key:
:return: None
'''
self.numVertices = self.numVertices + 1
newVertex = Vertex(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self, n):
'''
在图中找到名为n的顶点
:param n:
:return:
'''
if n in self.vertList:
return self.vertList[n]
else:
return None
def __contains__(self,n):
'''
对in进行重载
:param n:
:return:
'''
return n in self.vertList
def addEdge(self, f, t, weight = 0):
'''
)向图中添加一条带权重cost的有向边,用于连接顶点f和t
:param f:
:param t:
:param weight:
:return: None
'''
if f not in self.vertList:
nv = self.addVertex(f)
if t not in self.vertList:
nv = self.addVertex(t)
self.vertList[f].addNeighbor(self.vertList[t],weight)
def getVertics(self):
'''
以列表形式返回图中所有顶点
:return: {}.keys()
'''
return self.vertList.keys()
def __iter__(self):
'''
对迭代进行重载,方便遍历顶点邻接表
:return:
'''
return iter(self.vertList.values())
def getOutDegrees(self,vertex):
'''
获取某个顶点出度
:param vertex:
:return:
'''
return self.vertList[vertex].OutDegree
def getInDegrees(self,vertex):
'''
获取某个顶点的入度(很蠢的一个做法哈哈)
:param vertex:
:return:
'''
#初始化完后遍历查找
self.vertList[vertex].InDegree = 0
for u in self:
if self.vertList[vertex] in u.getConnections():
self.vertList[vertex].InDegree += 1
return self.vertList[vertex].InDegree
def OutDegreeUpdate(self):
for u in self:
self.OutDegreeList[u.getId()] = len(u.getConnections())
def InDegreeUpdate(self):
for u in self:
self.InDegreeList[u.getId()] = 0
for u in self:
for v in u.getConnections():
self.InDegreeList[v.getId()] += 1
def bfs(self,start = None):
'''
广度优先搜索
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
start.setDistance(0)
start.setPred(None)
vertQueue = queue.Queue()
vertQueue.put(start)
out = []
while vertQueue.empty() == False:
currentVert = vertQueue.get()
for nbr in currentVert.getConnections():
if nbr.getColor() == 'white':
nbr.setColor('gray')
nbr.setDistance(currentVert.getDistance() + 1)
nbr.setPred(currentVert.getId())
vertQueue.put(nbr)
currentVert.setColor('black')
out.append(currentVert.getId())
return out
def dfs(self):
'''
深度优先搜索
:return:
'''
out = []
self.time = 0
for aVertex in self:
aVertex.setColor('white')
aVertex.setPred(None)
for aVertex in self:
if aVertex.getColor() == 'white':
self.dfsvisit(aVertex,out)
return out
def dfsvisit(self, startVertex,out):
startVertex.setColor('gray')
self.time += 1
startVertex.setDiscovery(self.time)
for nextVertex in startVertex.getConnections():
if nextVertex.getColor() == 'white':
nextVertex.setPred(startVertex.getId())
self.dfsvisit(nextVertex,out)
startVertex.setColor('black')
self.time += 1
startVertex.setFinish(self.time)
out.append(startVertex.getId())
def dfs_stack(self,start = None):
'''
用栈实现dfs 该方法在某些情况下会失效 比如遍历生成拓扑排序
:param start:
:return:
'''
from collections import deque
stack = deque()
if start == None:
# 若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setColor('white')
v.setPred(None)
stack.append(start)
while len(stack) > 0:
currentVert = stack.pop()
for nbr in currentVert.getConnections():
if nbr.getColor() == 'white':
stack.append(nbr)
nbr.setPred(currentVert.getId())
nbr.setColor('balck')
def prim_simple(self,start = None):
'''
prim最小生成树简单版本
:param start: 迭代起点
:return:
'''
#在有向图中,有可能存在这样一种情况:两个节点之间来和回的权重不一样
#所以prim在某些情况下会失效
if start == None:
# 若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
for i in range(self.numVertices):
minDist = inf
rec = -1
# rec = 0
for j in self:
if j.getColor() == 'white' and j.getDistance() < minDist:
minDist = j.getDistance()
rec = j
print(('%s,%d')%(rec.getId(),rec.getDistance()))
for u in rec.getConnections():
if rec.getWeight(u) < u.getDistance():
u.setDistance(rec.getWeight(u))
# print(('%s,%s,%d')%(rec.getId(),u.getId(),rec.getWeight(u)))
u.setPred(rec.getId())
rec.setColor('black')
# for u in rec.getConnections():
# newCost = rec.getWeight(u) + rec.getDistance()
# if newCost < u.getDistance():
# u.setDistance(newCost)
# u.setPred(rec.getId())
# rec.setColor('black')
def prim(self,start = None):
'''
prim最小生成树(采用优先队列)
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
pq = queue.PriorityQueue()
for v in list(self.getVertics()):
pq.put((self.vertList[v].getDistance(),v))
while not pq.empty():
(t, currentVert) = pq.get()
currentVert = self.vertList[currentVert]
for nextVert in currentVert.getConnections():
newCost = currentVert.getWeight(nextVert)
if newCost < nextVert.getDistance() and nextVert.getColor() == 'white':
nextVert.setPred(currentVert.getId())
nextVert.setDistance(newCost)
pq.put((newCost, nextVert.id))
currentVert.setColor('black')
def dijkstra(self,start = None):
'''
dijkstra单源最短路径(使用优先队列)
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
pq = queue.PriorityQueue()
for v in list(self.getVertics()):
pq.put((self.vertList[v].getDistance(),v))
while not pq.empty():
(t, currentVert) = pq.get()
currentVert = self.vertList[currentVert]
for nextVert in currentVert.getConnections():
newDist = currentVert.getWeight(nextVert) + currentVert.getDistance()
if newDist < nextVert.getDistance() and nextVert.getColor() == 'white':
nextVert.setPred(currentVert.getId())
nextVert.setDistance(newDist)
pq.put((newDist, nextVert.id))
currentVert.setColor('black')
def dijkstra_simple(self,start = None):
'''
dijkstra单源最短路径简单版本
:param start:
:return:
'''
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
for i in range(self.numVertices):
minDist = inf
rec = 0
for j in self:
if j.getColor() == 'white' and j.getDistance() < minDist:
minDist = j.getDistance()
rec = j
for u in rec.getConnections():
if rec.getDistance() + rec.getWeight(u) < u.getDistance():
u.setDistance(rec.getDistance() + rec.getWeight(u))
u.setPred(rec.getId())
rec.setColor('black')
def bellman_ford(self,start = None):
'''
bellman_ford算法
:param start:
:return:
'''
if start == None:
# 若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
#可以用这种方法遍历 不过比较繁琐。
# for v in self.getVertics():
# self.vertList[v].setDistance(inf)
# self.vertList[v].setPred(None)
# pred[v] = None
for v in self:
v.setDistance(inf)
v.setPred(None)
start.setDistance(0)
for i in range(self.numVertices-1):
for v in self:
for u in v.getConnections():
print("(%s,%s,%s)" % (v.getId(), u.getId(), v.getWeight(u)))
if v.getDistance() + v.getWeight(u) < u.getDistance():
u.setDistance(v.getDistance() + v.getWeight(u))
u.setPred(v.getId())
for v in self:
for u in v.getConnections():
if v.getDistance() + v.getWeight(u) < u.getDistance():
print("存在负环")
return False
break
return True
def kruskal(self):
'''
kruskal算法使用并查集类
:return:
'''
disjoinset = DisjointSet([key.getId() for key in self])
edges = []
for v in self:
for u in v.getConnections():
edges.append((v.getId(),u.getId(),v.getWeight(u)))
edges.sort(key = lambda a:a[2])
minu_tree = []
for edge in edges:
u, v, w = edge
if disjoinset.same(u, v):
continue
disjoinset.merge(u, v)
self.getVertex(v).setPred(u)
minu_tree.append(edge)
for edge in minu_tree:
self.getVertex(u)
return minu_tree
def dfs_judge_cycle(self):
for aVertex in self:
aVertex.setColor('white')
aVertex.setPred(-1)
for aVertex in self:
if aVertex.getColor() == 'white':
if self.dfs_visit_judge_cycle(aVertex) == True:
return True
return False
def dfs_visit_judge_cycle(self, startVertex):
startVertex.setColor('gray')
startVertex.setDiscovery(self.time)
for nextVertex in startVertex.getConnections():
if nextVertex.getColor() == 'gray':
return True
if nextVertex.getColor() == 'white':
nextVertex.setPred(startVertex.getId())
if self.dfs_visit_judge_cycle(nextVertex) == True:
return True
startVertex.setColor('black')
def topological_sort_bfs(self):
self.InDegreeUpdate()
vertQueue = queue.Queue()
out = []
for v in self:
if self.InDegreeList[v.getId()] == 0:
vertQueue.put(v)
while vertQueue.empty() == False:
currentVert = vertQueue.get()
# print(currentVert.getId(),end=" ")
out.append(currentVert.getId())
for nbr in currentVert.getConnections():
self.InDegreeList[nbr.getId()] = self.InDegreeList[nbr.getId()] - 1
if self.InDegreeList[nbr.getId()] == 0:
vertQueue.put(nbr)
# print()
# print(out)
return out
def topological_sort_dfs(self):
self.out = []
L = []
for aVertex in self:
aVertex.setColor('white')
for aVertex in self:
if aVertex.getColor() == 'white':
self.topological_sort_dfs_visit(aVertex, L)
L.reverse()
return L
def topological_sort_dfs_visit(self, startVertex, L):
startVertex.setColor('gray')
for nextVertex in startVertex.getConnections():
if nextVertex.getColor() == 'white':
self.topological_sort_dfs_visit(nextVertex, L)
startVertex.setColor('black')
L.append(startVertex.getId())
def Strongly_Connected_Component(self):
R = []
G_r = self.reverse()
L = G_r.dfs()
for i in G_r:
i.setColor('white')
L_scc = []
L.reverse()
for i in L:
if self.vertList[i].getColor() == 'white':
self.dfsvisit(self.getVertex(i), L_scc)
R.append(L_scc)
L_scc = []
return R
def reverse(self):
new = Graph()
for u in self:
new.addVertex(u.getId())
for u in self:
for v in u.getConnections():
new.addEdge(v.getId(),u.getId(),u.getWeight(v))
new.InDegreeUpdate()
new.OutDegreeUpdate()
return new
###以下内容学习副产物 可以略过
def prim_other(self,start = None):
if start == None:
#若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
for v in self:
v.setDistance(inf)
v.setPred(None)
v.setColor('white')
start.setDistance(0)
pq = queue.PriorityQueue()
for v in list(self.getVertics()):
pq.put((self.vertList[v].getDistance(),v))
while not pq.empty():
(t, currentVert) = pq.get()
currentVert = self.vertList[currentVert]
for nextVert in currentVert.getConnections():
newCost = currentVert.getWeight(nextVert) + currentVert.getDistance()
if newCost < nextVert.getDistance() and nextVert.getColor() == 'white':
nextVert.setPred(currentVert.getId())
nextVert.setDistance(newCost)
pq.put((newCost, nextVert.id))
currentVert.setColor('black')
def BFS(self, s = None):
if s == None:
#若是未指定远点 默认取第一个顶点
s = list(self.getVertics())[0]
color = {}
pred = {}
dist = {}
queue = []
out = []
for i in self.vertList:
color[i] = WHITE
dist[i] = inf
pred[i] = -1
color[s] = GRAY
dist[s] = 0
queue.append(s)
while queue:
u = queue.pop(0)
for i in list(self.vertList[u].getConnections()):
print(i)
if color[i.id] == WHITE:
color[i.id] = GRAY
dist[i.id] = dist[u] + 1
pred[i.id] = u
queue.append(i.id)
color[u] = BLACK
out.append(u)
print(out)
print(pred.values())
print(dist.values())
return out,pred,dist
def kruskal_simple(self):
'''
kruskal算法简约写法(未用类)
:return:
'''
X = dict()
R = dict() # 各点的初始等级均为0,如果被做为连接的的末端,则增加1
def make_set(point):
X[point] = point
R[point] = 0
def find(point):
if X[point] != point:
X[point] = find(X[point])
return X[point]
def merge(point1, point2):
'''连接两个分量(节点)
'''
r1 = find(point1)
r2 = find(point2)
if r1 != r2:
if R[r1] > R[r2]:
X[r2] = r1
else:
X[r1] = r2
if R[r1] == R[r2]:
R[r2] += 1
edges = []
for v in self:
for u in v.getConnections():
edges.append((v.getId(), u.getId(), v.getWeight(u)))
print(edges)
edges.sort(key=lambda a: a[2])
print(edges) # 按照权重从小到大排序
for v in g:
make_set(v.getId())
minu_tree = []
for edge in edges:
v, u, weight = edge
if find(v) != find(u):
merge(v, u)
self.getVertex(u).setPred(v)
minu_tree.append(edge)
return minu_tree
def topological_sort_dfs_stack(self,start = None):
from collections import deque
stack = deque()
if start == None:
# 若是未指定远点 默认取第一个顶点
start = self.vertList[list(self.getVertics())[0]]
L = []
for v in self:
v.setColor('white')
stack.append(start)
while len(stack) > 0:
currentVert = stack.pop()
print(currentVert.getId())
for nbr in currentVert.getConnections():
print(nbr.getId())
if nbr.getColor() == 'white':
stack.append(nbr)
nbr.setColor('balck')
L.append(currentVert.getId())
return L
def traverse(y):
x = y
while x.getPred():
print(x.getId())
x = x.getPred()
print(x.getId)
# if __name__ == '__main__':
# #强联通分量测试
# scc = Graph()
# for i in range(1,11):
# scc.addVertex(i)
# scc.addEdge(1,10)
# scc.addEdge(10,1)
# scc.addEdge(1,3)
# scc.addEdge(3,4)
# scc.addEdge(4,1)
# scc.addEdge(8,10)
# scc.addEdge(8,9)
# scc.addEdge(9,8)
# scc.addEdge(9,7)
# scc.addEdge(7,7)
# scc.addEdge(3,7)
# scc.addEdge(4,6)
# scc.addEdge(6,5)
# scc.addEdge(5,2)
# scc.addEdge(2,6)
# R = scc.Strongly_Connected_Component()
# print(R)
# if __name__ == '__main__':
#
# #拓扑排序测试
# topological = Graph()
# topological.addVertex('短裤')
# topological.addVertex('长裤')
# topological.addVertex('腰带')
# topological.addVertex('衬衫')
# topological.addVertex('领带')
# topological.addVertex('外套')
# topological.addVertex('袜子')
# topological.addVertex('鞋')
# topological.addVertex('手表')
# topological.addEdge('袜子','鞋')
# topological.addEdge('短裤','鞋')
# topological.addEdge('短裤','长裤')
# topological.addEdge('长裤','鞋')
# topological.addEdge('长裤','腰带')
# topological.addEdge('衬衫','腰带')
# topological.addEdge('衬衫','领带')
# topological.addEdge('领带','外套')
# topological.addEdge('腰带','外套')
# x = topological.topological_sort_bfs()
# print(x)
# x = topological.topological_sort_dfs()
# print(x)
# if __name__ =='__main__':
#
# bellman = Graph()
# bellman.addVertex('s')
# bellman.addVertex('t')
# bellman.addVertex('x')
# bellman.addVertex('y')
# bellman.addVertex('z')
# bellman.addEdge('s','t',6)
# bellman.addEdge('s','y',7)
# bellman.addEdge('t','x',5)
# bellman.addEdge('x','t',-2)
# bellman.addEdge('t','z',-4)
# bellman.addEdge('t','y',8)
# bellman.addEdge('y','z',2)
# bellman.addEdge('y','x',-3)
# bellman.addEdge('x','z',7)
# bellman.bellman_ford()
# for v in bellman:
# print(v)
# for v in bellman:
# print(v.getPred(),end = ' ')
# print()
# for v in bellman:
# print(v.getDistance(),end = ' ')
# print()
# if __name__ =='__main__':
#
# g = Graph()
# g.addVertex('s')
# g.addVertex('t')
# g.addVertex('x')
# g.addVertex('y')
# g.addVertex('z')
# g.addEdge('s','t',8)
# g.addEdge('s','y',5)
# g.addEdge('t','x',1)
# g.addEdge('t','y',2)
# g.addEdge('x','z',4)
# g.addEdge('y','t',3)
# g.addEdge('y','z',2)
# g.addEdge('y','x',9)
# g.addEdge('z','x',6)
# g.dijkstra()
# for v in g:
# print(v)
# for v in g:
# print(v.getPred(),end = ' ')
# print()
# for v in g:
# print(v.getDistance(),end = ' ')
# print()
#
# g.dijkstra_simple()
# for v in g:
# print(v)
# for v in g:
# print(v.getPred(),end = ' ')
# print()
# for v in g:
# print(v.getDistance(),end = ' ')
# print()
# if __name__ =='__main__':
#
# g = Graph()
# g.addVertex('a')
# g.addVertex('b')
# g.addVertex('c')
# g.addVertex('d')
# g.addVertex('f')
# g.addVertex('h')
# g.addVertex('g')
# g.addVertex('i')
# g.addVertex('z')
# g.addEdge('a','b',4)
# g.addEdge('b','a',4)
# g.addEdge('a','h',8)
# g.addEdge('h','a',8)
# g.addEdge('b','c',8)
# g.addEdge('c','b',8)
# g.addEdge('b','h',1)
# g.addEdge('h','b',1)
# g.addEdge('h','i',7)
# g.addEdge('i','h',7)
# g.addEdge('c','i',2)
# g.addEdge('i','c',2)
# g.addEdge('c','d',7)
# g.addEdge('d','c',7)
# g.addEdge('i','g',4)
# g.addEdge('g','i',4)
# g.addEdge('g','f',2)
# g.addEdge('f','g',2)
# g.addEdge('f','z',10)
# g.addEdge('z','f',10)
# g.addEdge('d','f',14)
# g.addEdge('f','d',14)
# g.addEdge('d','z',9)
# g.addEdge('z','d',9)
# g.addEdge('c','f',6)
# g.addEdge('f','c',6)
# g.addEdge('h','g',1)
# g.addEdge('g','h',1)
# g.prim()
# for v in g:
# print(v)
# for v in g:
# print(v.getPred(),end = ' ')
# print()
# for v in g:
# print(v.getDistance(),end = ' ')
# print()
#
# g.prim_simple()
# for v in g:
# print(v)
# for v in g:
# print(v.getPred(),end = ' ')
# print()
# for v in g:
# print(v.getDistance(),end = ' ')
# print()
# x = g.kruskal()
# print(x)
if __name__ =='__main__':
g = Graph()
for i in range(1,9):
g.addVertex(i)
g.addEdge(1,2)
g.addEdge(2,1)
g.addEdge(1,5)
g.addEdge(5,1)
g.addEdge(2, 6)
g.addEdge(6,2)
g.addEdge(6, 3)
g.addEdge(3,6)
g.addEdge(6, 7)
g.addEdge(7,6)
g.addEdge(3, 7)
g.addEdge(7,3)
g.addEdge(3, 4)
g.addEdge(4,3)
g.addEdge(4, 8)
g.addEdge(4,7)
g.addEdge(7,4)
g.addEdge(8,4)
g.addEdge(7, 8)
g.addEdge(8,7)
g.bfs(g.vertList[2])
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
x = g.dfs()
print(x)
for v in g:
print(v)
for v in g:
print(v.getPred(),end = ' ')
print()
for v in g:
print(v.getDistance(),end = ' ')
print()
for v in g:
print(v.getDiscovery(),end = ' ')
print()
for v in g:
print(v.getFinish(),end = ' ')
print()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068