ACM的竞赛性强,因此自己应该和自己的实际应用联系起来.适合自己的才是好的,有的人不适合搞算法,喜欢系统架构,因此不要看到别人什么就眼红,发挥自己的长处,这才是重要的.
第一阶段:练经典常用算法,下面的每个算法要打得非常的熟练,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完
1.最短路(Floyd、Dijstra,BellmanFord)
2.最小生成树(先写个prim,kruscal要用并查集,不好写)
3.大数(高精度)加减乘除
4.二分查找.(代码可在五行以内)
5.叉乘、判线段相交、然后写个凸包.
6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)
7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.
辗转相除
用处:
辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法.
定义:
设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q……r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q……r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除r2,……如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(a,b)。
例如:a=25,b=15,a/b=1……10,b/10=1……5,10/5=2…….0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。
证明:
设两数为a、b(b
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质【否则,可设m-kn=xd,n=yd,(d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公约数成为cd,而非c,与前面结论矛盾】
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。/**
* 求a,b之间的最大公约数,这里要求a>b
* @param a
* @param b
* @return
*/
public static int getMaxPublicNumber(int a,int b){
return (a % b == 0 ) ? b : getMaxPublicNumber(b, a % b);
}
8.调用系统的qsort,技巧很多,慢慢掌握.
9.任意进制间的转换
第二阶段:练习复杂一点,但也较常用的算法。如:1.二分图匹配(匈牙利),最小路径覆盖2.网络流,最小费用流。3.线段树.4.并查集。5.熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp6.博弈类算法。博弈树,二进制法等。7.最大团,最大独立集。8.判断点在多边形内。9.差分约束系统.10.双向广度搜索、A*算法,最小耗散优先.
===========================================================================================
图论路径问题0/1边权最短路径BFS非负边权最短路径(Dijkstra)可以用Dijkstra解决问题的特征负边权最短路径Bellman-FordBellman-Ford的Yen-氏优化差分约束系统Floyd广义路径问题传递闭包极小极大距离 / 极大极小距离Euler Path / Tour圈套圈算法混合图的 Euler Path / TourHamilton Path / Tour特殊图的Hamilton Path / Tour 构造生成树问题最小生成树第k小生成树最优比率生成树0/1分数规划度限制生成树连通性问题强大的DFS算法无向图连通性割点割边二连通分支有向图连通性强连通分支2-SAT最小点基有向无环图拓扑排序有向无环图与动态规划的关系二分图匹配问题一般图问题与二分图问题的转换思路最大匹配有向图的最小路径覆盖0 / 1矩阵的最小覆盖完备匹配最优匹配稳定婚姻网络流问题网络流模型的简单特征和与线性规划的关系最大流最小割定理最大流问题有上下界的最大流问题循环流最小费用最大流 / 最大费用最大流弦图的性质和判定
===========================================================================================
组合数学解决组合数学问题时常用的思想逼近递推/动态规划概率问题Polya定理计算几何/解析几何计算几何的核心:叉积/面积解析几何的主力:复数基本形点直线,线段多边形凸多边形/凸包凸包算法的引进,卷包裹法Graham扫描法水平序的引进,共线凸包的补丁完美凸包算法相关判定两直线相交两线段相交点在任意多边形内的判定点在凸多边形内的判定经典问题最小外接圆近似O(n)的最小外接圆算法点集直径旋转卡壳,对踵点多边形的三角剖分
=========================================================================================数学/数论最大公约数Euclid算法扩展的Euclid算法同余方程/二元一次不定方程同余方程组线性方程组高斯消元法解mod 2域上的线性方程组整系数方程组的精确解法矩阵行列式的计算利用矩阵乘法快速计算递推关系分数分数树连分数逼近数论计算求N的约数个数求phi(N)求约数和快速数论变换……素数问题概率判素算法概率因子分解
==========================================================================================
数据结构组织结构二叉堆左偏树二项树胜者树跳跃表样式图标斜堆reap统计结构树状数组虚二叉树线段树矩形面积并圆形面积并关系结构Hash表并查集路径压缩思想的应用STL中的数据结构vectordequeset/map
动态规划/记忆化搜索动态规划和记忆化搜索在思考方式上的区别最长子序列系列问题最长不下降子序列最长公共子序列最长公共不下降子序列一类NP问题的动态规划解法树型动态规划背包问题动态规划的优化四边形不等式函数的凸凹性状态设计规划方向
=========================================================================================线性规划常用思想二分 最小表示法串KMP Trie结构后缀树/后缀数组 LCA/RMQ有限状态自动机理论排序选择/冒泡快速排序堆排序归并排序基数排序拓扑排序排序网络
========================================================================================
初期:一.基本算法:(1)枚举.(poj1753,poj2965)(2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法.(4)递推.(5)构造法.(poj3295)(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)(3)最小生成树算法(prim,kruskal)(poj1789,poj2485,poj1258,poj3026)(4)拓扑排序(poj1094)(5)二分图的最大匹配(匈牙利算法)(poj3041,poj3020)(6)最大流的增广路算法(KM算法).(poj1459,poj3436)三.数据结构.(1)串(poj1035,poj3080,poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排)(poj2388,poj2299)(3)简单并查集的应用.(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树)(poj2513)四.简单搜索(1)深度优先搜索(poj2488,poj3083,poj3009,poj1321,poj2251)(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)五.动态规划(1)背包问题.(poj1837,poj1276)(2)型如下表的简单DP(可参考lrj的书 page149):1.E[j]=opt{D+w(i,j)}(poj3267,poj1836,poj1260,poj2533)2.E[i,j]=opt{D